The frequency dependent time-delay correlation function K(Omega) is studied
analytically for a particle reflected from a finite one-dimensional (1D) d
isordered system. In the long sample limit, K(Omega) can be used to extract
the resonance width distribution rho(Gamma). Both quantities are found to
decay algebraically as Gamma(-nu) and Omega(-nu), nu similar or equal to 1.
25 in a large range of arguments. Numerical calculations for the resonance
width distribution in the 1D non-Hermitian tight-binding model agree reason
ably with the analytical formulas.