Three-lobed shape bifurcation of rotating liquid drops

Citation
K. Ohsaka et Eh. Trinh, Three-lobed shape bifurcation of rotating liquid drops, PHYS REV L, 84(8), 2000, pp. 1700-1703
Citations number
13
Categorie Soggetti
Physics
Journal title
PHYSICAL REVIEW LETTERS
ISSN journal
00319007 → ACNP
Volume
84
Issue
8
Year of publication
2000
Pages
1700 - 1703
Database
ISI
SICI code
0031-9007(20000221)84:8<1700:TSBORL>2.0.ZU;2-1
Abstract
The evolution of axisymmetric equilibrium shapes of a rigidly rotating liqu id drop can be extended beyond the 2-lobed shape bifurcation point if the r otating drop is driven in the n = 2 axisymmetric shape oscillation (perturb ation), where n is the mode of oscillation. A reason for the extended stabi lity of the perturbed rotating drop is that the inertia of the driven axisy mmetric shape oscillation suppresses growth of a natural nonaxisymmetric sh ape fluctuation which leads to the 2-lobed shape bifurcation. The axisymmet ric shape of the drop eventually bifurcates into either a 2- or a 3-lobed s hape at a higher bifurcation point which is asserted to be the 3-lobed shap e bifurcation point.