Deformation quantization and invariant distributions

Citation
M. Andler et al., Deformation quantization and invariant distributions, CR AC S I, 330(2), 2000, pp. 115-120
Citations number
7
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
330
Issue
2
Year of publication
2000
Pages
115 - 120
Database
ISI
SICI code
0764-4442(20000115)330:2<115:DQAID>2.0.ZU;2-2
Abstract
We study Kontsevich's deformation quantization for the dual of a finite-dim ensional Lie algebra g. Regarding elements of S(g) as distributions on g, w e show that the *-multiplication operator (r bar right arrow r * p) is a di fferential operator with analytic germ at 0. We use this to establish a con jecture of Kashiwara and Vergne which, in turn, gives a new proof of Duflo' s result on the local solvability of bi-invariant differential operators on a Lie group. (C) 2000 Academie des sciences/Editions scientifiques et medi cales Elsevier SAS.