G-uniform scalar integrability and strong laws of large numbers for Pettisintegrable functions with values in a separable locally convex space

Citation
C. Castaing et Pr. De Fitte, G-uniform scalar integrability and strong laws of large numbers for Pettisintegrable functions with values in a separable locally convex space, J THEOR PR, 13(1), 2000, pp. 93-134
Citations number
48
Categorie Soggetti
Mathematics
Journal title
JOURNAL OF THEORETICAL PROBABILITY
ISSN journal
08949840 → ACNP
Volume
13
Issue
1
Year of publication
2000
Pages
93 - 134
Database
ISI
SICI code
0894-9840(200001)13:1<93:GSIASL>2.0.ZU;2-V
Abstract
Generalizing techniques developed by Cuesta and Matran for Buchner integrab le random vectors of a separable Banach space, we prove a strong law of lar ge numbers for Pettis integrable random elements of a separable locally con vex space E. This result may be seen as a compactness result in a suitable topology on the set of Pettis integrable probabilities on E.