The so-called enhanced strain finite elements are based on the enrichment o
f the standard compatible strain field by the introduction of additional, n
on-compatible strains. This class of elements can be derived starting from
a partial Hu-Washizu variational principle. However, since in the original
enhanced strain formulation the stress field is eliminated from the formula
tion, a separate least-squares procedure had to be implemented for a variat
ional derivation of the stress field. A three-field generalized variable ap
proach incorporating strain enhancement is proposed in the present paper wi
thin the context of linear elastic structural problems. It is shown how the
original two-field enhanced strain method can be naturally recovered by su
itably choosing the strain model. For this case a straightforward, but stil
l variationally consistent stress recovery is proposed. Copyright (C) 2000
John Wiley & Sons, Ltd.