On the equivalence of certain ergodic properties for Gibbs states

Citation
F. Den Hollander et Je. Steif, On the equivalence of certain ergodic properties for Gibbs states, ERGOD TH DY, 20, 2000, pp. 231-239
Citations number
9
Categorie Soggetti
Mathematics
Journal title
ERGODIC THEORY AND DYNAMICAL SYSTEMS
ISSN journal
01433857 → ACNP
Volume
20
Year of publication
2000
Part
1
Pages
231 - 239
Database
ISI
SICI code
0143-3857(200002)20:<231:OTEOCE>2.0.ZU;2-J
Abstract
We extend our previous work by proving that for translation invariant Gibbs states on Z(d) with a translation invariant interaction potential Psi = (P si(A)) satisfying Sigma(A There Exists 0) \A\(-1)[diam(A)](d)\\Psi(A)\\ < i nfinity the following hold: (1) the Kolmogorov-property implies a trivial f ull tail and (2) the Bernoulli-property implies Folner independence. The ex istence of bilaterally deterministic Bernoulli Shifts tells us that neither (1) nor (2) is, in general, true for random fields without some further as sumption (even when d = 1).