Wavelet-based estimation of multivariate regression functions in Besov spaces

Authors
Citation
E. Masry, Wavelet-based estimation of multivariate regression functions in Besov spaces, J NONPARA S, 12(2), 2000, pp. 283-308
Citations number
31
Categorie Soggetti
Mathematics
Journal title
JOURNAL OF NONPARAMETRIC STATISTICS
ISSN journal
10485252 → ACNP
Volume
12
Issue
2
Year of publication
2000
Pages
283 - 308
Database
ISI
SICI code
1048-5252(2000)12:2<283:WEOMRF>2.0.ZU;2-O
Abstract
Let (Y,X) = {Y-i,X-i} be real-valued jointly stationary processes and let r ho be a Borel measurable function on the real line. Let g(x) = E[rho(Y-1)\X -1 = x] be a d-dimensional regression function. For regression functions in the Besov space B-s,B-p,B-q we estimate g using orthonormal wavelet bases. Uniform rates of almost sure convergence over compact subsets of R-d are e stablished for strongly mixing processes.