Uniqueness of the least-energy solution for a semilinear Neumann problem

Authors
Citation
M. Grossi, Uniqueness of the least-energy solution for a semilinear Neumann problem, P AM MATH S, 128(6), 2000, pp. 1665-1672
Citations number
13
Categorie Soggetti
Mathematics
Journal title
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
ISSN journal
00029939 → ACNP
Volume
128
Issue
6
Year of publication
2000
Pages
1665 - 1672
Database
ISI
SICI code
0002-9939(2000)128:6<1665:UOTLSF>2.0.ZU;2-N
Abstract
We prove that the least-energy solution of the problem [GRAPHICS] where B is a ball, d > 0 and 1 < p < N+2/N-2 if N greater than or equal to 3, p > 1 if N = 2, is unique (up to rotation) if d is small enough.