Existence and uniqueness theorems for singular anisotropic quasilinear elliptic boundary value problems

Citation
S. Hill et al., Existence and uniqueness theorems for singular anisotropic quasilinear elliptic boundary value problems, P AM MATH S, 128(6), 2000, pp. 1673-1683
Citations number
13
Categorie Soggetti
Mathematics
Journal title
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
ISSN journal
00029939 → ACNP
Volume
128
Issue
6
Year of publication
2000
Pages
1673 - 1683
Database
ISI
SICI code
0002-9939(2000)128:6<1673:EAUTFS>2.0.ZU;2-T
Abstract
On bounded domains Omega subset of R-2 we consider the anisotropic problems u(-a)u(xx) + u(-b)u(yy) = p(x, y) in Omega with a, b > 1 and u = infinity on partial derivative Omega and u(c)u(xx) + u(d)u(yy) + q(x, y) = 0 in Omeg a with c, d greater than or equal to 0 and u = 0 on partial derivative Omeg a. Moreover, we generalize these boundary value problems to space-dimension s n > 2. Under geometric conditions on Omega and monotonicity assumption on 0 < p, q is an element of C-alpha(<(Omega)over bar>) we prove existence an d uniqueness of positive solutions.