The limit case of the Cesaro-alpha convergence of the ergodic averages andthe ergodic Hilbert transform

Citation
Al. Bernardis et Fj. Martin-reyes, The limit case of the Cesaro-alpha convergence of the ergodic averages andthe ergodic Hilbert transform, P RS EDIN A, 130, 2000, pp. 225-237
Citations number
18
Categorie Soggetti
Mathematics
Journal title
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS
ISSN journal
03082105 → ACNP
Volume
130
Year of publication
2000
Part
2
Pages
225 - 237
Database
ISI
SICI code
0308-2105(2000)130:<225:TLCOTC>2.0.ZU;2-F
Abstract
Sarrion and the authors gave a sufficient condition on invertible Lamperti operators on L-P which guarantees the convergence in the Cesaro-alpha sense of the ergodic averages and the ergodic Hilbert transform for all f is an element of L-p with p > 1/(1 + alpha) and -1 < alpha less than or equal to 0. The result does not hold for the space L1/(1 + alpha). In this paper we give a positive result for the smaller Lorentz; space L-1/(1 + alpha),L-1.