A LOCAL LIMIT-THEOREM ON THE SEMIDIRECT P RODUCT OF R(ASTERISK+) AND R(D)

Authors
Citation
E. Lepage et M. Peigne, A LOCAL LIMIT-THEOREM ON THE SEMIDIRECT P RODUCT OF R(ASTERISK+) AND R(D), Comptes rendus de l'Academie des sciences. Serie 1, Mathematique, 319(5), 1994, pp. 479-482
Citations number
6
Categorie Soggetti
Mathematics, General",Mathematics
ISSN journal
07644442
Volume
319
Issue
5
Year of publication
1994
Pages
479 - 482
Database
ISI
SICI code
0764-4442(1994)319:5<479:ALLOTS>2.0.ZU;2-6
Abstract
Let G be the demi-direct product of R(+) and R(d) and mu a probabilit y measure on G which is absolutely continuous with respect to the righ t Haar measure. Let mu(n) be the n-th power of convolution of mu. Und er moment assumptions on mu, one can prove that there exists rho E[0, 1] such that the sequence of Radon measures ((n(3/2)/rho(n))mu(n))n g reater than or equal to 1 converges weakly to a non trivial measure wh en n goes to +infinity.