We study the existence and completeness of the wave operators W+/-(A(b
), -Delta) for general Schrodinger operators of the form A(b) = -(N) S
igma(k,j=1) (D-j - ib(j))a(kj)(D-k - ib(k)) + (N) Sigma(k=1) [a(k)(D-k
- ib(k)) - (D-k - ib(k))a(k)] + c where b = (b(1),...,b(N)) is a magn
etic potential.