We examine the possibility that, when a black hole is formed, the informati
on on the collapsed star is stored as the entanglement entropy between the
outside and the thin region (of the order of the Planck length) of the insi
de of the horizon. For this reason, we call this the entanglement entropy o
f the black hole "horizon." We construct two models: one is in Minkowski sp
acetime and the other is in the Rindler wedge. To calculate the entropy exp
licitly, we assume that the thin regions of the order of the Planck length
of the outside and the inside of the horizon are completely entangled by qu
antum effects. We also use the property of the entanglement entropy that it
is symmetric under an interchange of the observed and unobserved subsystem
s. Our setting and this symmetric property substantially reduce the needed
numerical calculations. As a result of our analysis, we can explain the Bek
enstein-Hawking entropy itself (rather than its correction by matter fields
) in the context of entanglement entropy.