In this paper, we consider a multivariate one-way random effect model with
equal replications. We propose nonnegative definite estimators for "between
" and "within" components of variance. Under the Stein loss function, it is
shown that the proposed estimators of the "within" component dominate the
best unbiased estimator. Restricted maximum likelihood, truncated and order
-preserving minimax estimators are also proposed. A Monte Carlo simulation
is carried out to choose among these estimators.
For estimating the "between" component, we consider the Stein loss function
for jointly estimating the two positive definite matrices ("within" and "w
ithin" plus "between") and obtain estimators for the "between" component do
minating the best unbiased estimator. Other estimators as considered for "w
ithin" are also proposed. A Monte Carlo simulation is carried out to choose
among these estimators.