Al. Kawczynski et al., Complex mixed-mode periodic and chaotic oscillations in a simple three-variable model of nonlinear system, CHAOS, 10(2), 2000, pp. 299-310
A detailed study of a generic model exhibiting new type of mixed-mode oscil
lations is presented. Period doubling and various period adding sequences o
f bifurcations are observed. New type of a family of 1D (one-dimensional) r
eturn maps is found. The maps are discontinuous at three points and consist
of four branches. They are not invertible. The model describes in a qualit
ative way mixed-mode oscillations with two types of small amplitude oscilla
tions at local maxima and local minima of large amplitude oscillations, whi
ch have been observed recently in the Belousov-Zhabotinsky system. (C) 2000
American Institute of Physics. [S1054-1500(00)01102-2].