Response of the NCAR climate system model to increased CO2 and the role ofphysical processes

Citation
Ga. Meehl et al., Response of the NCAR climate system model to increased CO2 and the role ofphysical processes, J CLIMATE, 13(11), 2000, pp. 1879-1898
Citations number
49
Categorie Soggetti
Earth Sciences
Journal title
JOURNAL OF CLIMATE
ISSN journal
08948755 → ACNP
Volume
13
Issue
11
Year of publication
2000
Pages
1879 - 1898
Database
ISI
SICI code
0894-8755(20000601)13:11<1879:ROTNCS>2.0.ZU;2-7
Abstract
The global warming resulting from increased CO2 is addressed in the context of two regional processes that contribute to climate change in coupled cli mate models, the "El Nino-like" response (slackening of the equatorial Paci fic SST gradient) and sea-ice response at high latitudes. The National Cent er for Atmospheric Research (NCAR) Climate System Model (CSM) response is c ompared with results from a coupled model that produces comparatively great er global warming, the NCAR U.S. Department of Energy (DOE) global coupled model. In an experiment where atmospheric CO2 is increased 1% yr(-1) compou nd, globally averaged surface air temperature increase near the time of CO2 doubling for the CSM is 1.43 degrees C (3.50 degrees C for the DOE model). Analysis of a simple coupled model shows the CSM equilibrium sensitivity t o doubled CO2 is comparable to that from the slab ocean version (about 2.1 degrees C). One process that contributes to global warming (estimated to be about 5% in one slab ocean model), as well as to significant Pacific regio n climate effects, is the El Nino-like response. It is a notable feature in the DOE model and some other global coupled models but does not occur in t he CSM. The authors show that cloud responses are a major determining facto r. With increased CO2, there are negative net cloud-forcing differences in the western equatorial Pacific in the CSM and DOE models, but large positiv e differences in the DOE model and negative differences in the CSM in the e astern equatorial Pacific. This produces asymmetric cloud radiative forcing contributing to an El Nino-like response in the DOE model and not in the C SM. To remove the amplifying effects of ocean dynamics and to identify poss ible parameter-dependent processes that could contribute to such cloud forc ing changes, the authors analyze slab ocean versions of the coupled models in comparison with a slab ocean configuration of the atmospheric model in t he CSM [Community Climate Model Version 3 (CCM3)] that includes prognostic cloud liquid water. The latter shows a change in sign (from negative to pos itive) of the net cloud forcing in the eastern equatorial Pacific with doub led CO2, similar to the DOE model, in comparison with the CCM3 version with diagnostic cloud liquid water. Atmospheric Model Intercomparison Project ( prescribed SST) experiments show that ail three atmospheric models (DOE, CC M3 with diagnostic cloud liquid water, and CCM3 with prognostic cloud liqui d water) perform poorly relative to observations in terms of cloud radiativ e forcing, though CCM3 with prognostic cloud liquid water is slightly super ior to the others. Another process that contributes to climate response to increasing CO2 is sea-ice changes, which are estimated to enhance global wa rming by roughly 20% in the CSM and 37% in the DOE model. Sea-ice retreat w ith increasing CO2 in the CSM is less than in the DOE model in spite df ide ntical sea-ice formulations. Results from the North Atlantic and Greenland- Iceland-Norwegian (GIN) Sea region show that the surface energy budget resp onse is controlled primarily by surface albedo (related to ice area changes ) and cloud changes. However, a more important factor is the poleward ocean heat transport associated with changes in meridional overturning in the GI N Sea. With increased CO2, the transport of warmer water from the south int o this region in the DOE model is greater in comparison with that of the CS M. This leads to a larger ice reduction in the DOE model, thus also contrib uting to the enhanced contribution from ice albedo feedback in the DOE mode l in comparison with the CSM.