Distributional complexes split for positive dimensions

Citation
P. Domanski et D. Vogt, Distributional complexes split for positive dimensions, J REIN MATH, 522, 2000, pp. 63-79
Citations number
29
Categorie Soggetti
Mathematics
Journal title
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK
ISSN journal
00754102 → ACNP
Volume
522
Year of publication
2000
Pages
63 - 79
Database
ISI
SICI code
0075-4102(20000531)522:<63:DCSFPD>2.0.ZU;2-7
Abstract
It is proved that if T-i are linear continuous operators then the following (algebraically) exact complex: [GRAPHICS] splits for i greater than or equal to 1, i.e., T-i : (D'(Omega(i)))(Si) --> Im T-i has a continuous and linear right inverse. If T-0 is a matrix of co nvolution operators, then the complex (*) splits for i = 0 if and only if F is a strict projective limit of LB-spaces.