This paper introduces a novel extension to a scalar two-dimensional polynom
ial finite-element basis to better cope with wedge singularities in wavegui
de problems. An error estimate for the computed cutoff frequencies of the w
aveguide shows that the relative H-1 error of the modal solution is critica
l, We demonstrate that the present extension significantly improves the app
roximation properties of a polynomial basis, especially in the H-1 norm. Nu
merical examples show that the present extension compares well with other r
ecent techniques. Combining variable order elements with singular basis ext
ension provides further significant reduction of the computational burden.