This paper examines the continuous time optimal consumption and portfolio c
hoice of an investor having an initial wealth endowment and an uncertain st
ream of income from non-traded assets. The income stream is not spanned by
traded assets and the investor is not allowed to borrow against future inco
me, so the financial market is incomplete, We solve the corresponding stoch
astic control problem numerically with the Markov chain approximation metho
d, prove convergence of the method, and study the optimal policies. In part
icular, we find that the implicit value the agent attaches to an uncertain
income stream typically is much smaller in this incomplete market than it i
s in the otherwise identical complete market. Our results suggest that this
is mainly due to the presence of liquidity constraints. (C) 2000 Elsevier
Science B.V. All rights reserved. JEL classification: C61; G11.