M. Kunze et Jf. Rodrigues, An elliptic quasi-variational inequality with gradient constraints and some of its applications, MATH METH A, 23(10), 2000, pp. 897-908
We consider a class of quasi-variational inequalities for certain second-or
der elliptic operators, where the set of admissible functions is required t
o satisfy an implicit gradient bound which depends on the solutions itself.
We give sufficient conditions for the existence of a solution, and we appl
y our results to stationary problems arising in superconductivity, in therm
oplasticity, and in electrostatics with implicit ionization threshold. Copy
right (C) 2000 John Wiley & Sons, Ltd.