Local structure of Schelter-Procesi smooth orders

Authors
Citation
L. Le Bruyn, Local structure of Schelter-Procesi smooth orders, T AM MATH S, 352(10), 2000, pp. 4815-4841
Citations number
11
Categorie Soggetti
Mathematics
Journal title
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
ISSN journal
00029947 → ACNP
Volume
352
Issue
10
Year of publication
2000
Pages
4815 - 4841
Database
ISI
SICI code
0002-9947(2000)352:10<4815:LSOSSO>2.0.ZU;2-4
Abstract
In this paper we give the etale local classification of Schelter-Procesi sm ooth orders in central simple algebras. In particular, we prove that if Del ta is a central simple K-algebra of dimension n(2), where K is a field of t rancendence degree d, then there are only finitely many etale local classes of smooth orders in Delta. This result is a non-commutative generalization of the fact that a smooth variety is analytically a manifold, and so has o nly one type of etale local behaviour.