Maximum likelihood parameter estimation from incomplete data via the sensitivity equations: The continuous-time case

Citation
Cd. Charalambous et A. Logothetis, Maximum likelihood parameter estimation from incomplete data via the sensitivity equations: The continuous-time case, IEEE AUTO C, 45(5), 2000, pp. 928-934
Citations number
17
Categorie Soggetti
AI Robotics and Automatic Control
Journal title
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
ISSN journal
00189286 → ACNP
Volume
45
Issue
5
Year of publication
2000
Pages
928 - 934
Database
ISI
SICI code
0018-9286(200005)45:5<928:MLPEFI>2.0.ZU;2-V
Abstract
This paper is concerned with maximum likelihood (ML) parameter estimation o f continuous-time nonlinear partially observed stochastic systems, via the expectation maximization (EM) algorithm. It is shown that the EM algorithm can be executed efficiently, provided the unnormalized conditional density of nonlinear filtering is either explicitly solvable or numerically impleme nted. The methodology exploits the relationships between incomplete and com plete data, log likelihood and its gradient.