Maxwell's equations in composite materials: remarks on density

Citation
S. Lohrengel et S. Nicaise, Maxwell's equations in composite materials: remarks on density, CR AC S I, 330(11), 2000, pp. 991-996
Citations number
10
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
330
Issue
11
Year of publication
2000
Pages
991 - 996
Database
ISI
SICI code
0764-4442(20000601)330:11<991:MEICMR>2.0.ZU;2-U
Abstract
In this Note, a necessary and sufficient condition is found, which guarante es the density of piecewise regular vector fields in the subspace of H(curl ; Omega) whose elements satisfy div(epsilon E) is an element of L-2(Omega 2 ) and have their tangential trace in L-2(partial derivative Omega); Omega b eing a polygonal domain of R-2, union of J polygonal subdomains. The proof uses explicitly the singularities of a scalar transmission problem. Numeric ally the result allows a discretization of Maxwell's equations with an impe dance boundary condition in composite materials by means of nodal, H-1-conf orming, finite elements. (C) 2000 Academie des sciences/Editions scientifiq ues et medicales Elsevier SAS.