The diffusion approximation proves to be valid for light propagation in hig
hly scattering media, but it breaks down in the presence of nonscattering r
egions. We present a compact expression of the boundary conditions for diff
usive media with nonscattering regions, taking into account small-index mis
match. Results fi om an integral method based on the extinction theorem bou
ndary condition are contrasted with both Monte Carlo and finite-element-met
hod simulations, and a study of its limit of validity is presented. These p
rocedures are illustrated by considering the case of the cerebro-spinal flu
id in the brain, for which we demonstrate that for practical situations in
light diffusion, these boundary conditions yield accurate results. (C) 2000
Optical Society of America [S0740-3232(00)00409-9] OCIS codes: 170.5270, 2
90.1990.