On the quasitriangular structures of bicrossproduct Hopf algebras

Citation
Wz. Zhao et al., On the quasitriangular structures of bicrossproduct Hopf algebras, COMM ALGEB, 28(10), 2000, pp. 4839-4853
Citations number
8
Categorie Soggetti
Mathematics
Journal title
COMMUNICATIONS IN ALGEBRA
ISSN journal
00927872 → ACNP
Volume
28
Issue
10
Year of publication
2000
Pages
4839 - 4853
Database
ISI
SICI code
0092-7872(2000)28:10<4839:OTQSOB>2.0.ZU;2-X
Abstract
In this paper we show that if B star H is a bicrossproduct Hopf algebra the n (B star H, R) is qusitriangular if and only if R has a unique decompositi on: R = Sigma Q((1))V((1))(V) over bar((1)) X (TU(1))-U-(1) X Q((2))(V-(2)- ->U-(2)) X (V) over bar((2))T((2)) such that Q, T, V and U satisfy certain compatible conditions. The result is applied to a certain bicrossproduct of H and H-op, where H is a Hopf algebra with bijective antipode.