Na in selenized Cu(In,Ga)Se-2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances

Citation
A. Rockett et al., Na in selenized Cu(In,Ga)Se-2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances, THIN SOL FI, 372(1-2), 2000, pp. 212-217
Citations number
14
Categorie Soggetti
Apllied Physucs/Condensed Matter/Materiales Science","Material Science & Engineering
Journal title
THIN SOLID FILMS
ISSN journal
00406090 → ACNP
Volume
372
Issue
1-2
Year of publication
2000
Pages
212 - 217
Database
ISI
SICI code
0040-6090(20000822)372:1-2<212:NISCON>2.0.ZU;2-A
Abstract
We examined the effect of deposition of Na on Mo-coated glasses and the Na content of the substrate glass on standard production Cu(In1-xGax)Se-2 (CIG S)-based solar cells fabricated by selenization of Cu-Ga-In precursor thin films. Under optimal conditions, net Na content has a larger effect on the films than does the choice of substrate glass. Device performances improved with modest amounts of added Na on borosilicate glass. Device performances on soda-lime glass were not improved by adding Na. The supply of Na appear s to have been adequate from the glass itself. A peak in device performance was found as a function of integrated Na in the CIGS layer as determined b y secondary ion mass spectrometry (SIMS). The Na is found primarily in the areas of decreased grain size in the selenized CIGS where Ga is also found. S, deposited with the Na does not end up in the same place as does the Na. Rather, it tends to move toward the surface and accumulate in a buried lay er. This is probably due to the reaction process rather than to the microst ructure. Oxygen has no apparent effect on Na behavior in the CIGS. (C) 2000 Elsevier Science S.A. All rights reserved.