Some approximation concepts, intended to reduce the computational effort du
ring optimization of structural systems, are presented. High quality approx
imations of the response functions are introduced and used to evaluate both
the constraint values and constraint derivatives. The various approximatio
ns are then integrated into an effective procedure for structural optimizat
ion. The solution is carried out by selecting a sequence of direction vecto
rs in the design space. For each selected direction, optimization is carrie
d out in a corresponding two-dimensional design plane, with only a single i
ndependent variable. As a result, the number of directions needed to reach
the optimum, and the overall computational effort involved in the solution
process are significantly reduced. Assuming second-order approximations in
some typical examples, it has been found that only two to three exact analy
ses are needed to achieve the optimum. Moreover, for higher-order approxima
tions, a single exact analysis is sufficient for the whole design process.
(C) 2000 Civil-Comp Ltd. and Elsevier Science Ltd. All rights reserved.