The Farrell-Jones Isomorphism Conjecture for finite covolume hyperbolic actions and the algebraic K-theory of Bianchi groups

Citation
E. Berkove et al., The Farrell-Jones Isomorphism Conjecture for finite covolume hyperbolic actions and the algebraic K-theory of Bianchi groups, T AM MATH S, 352(12), 2000, pp. 5689-5702
Citations number
25
Categorie Soggetti
Mathematics
Journal title
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
ISSN journal
00029947 → ACNP
Volume
352
Issue
12
Year of publication
2000
Pages
5689 - 5702
Database
ISI
SICI code
0002-9947(2000)352:12<5689:TFICFF>2.0.ZU;2-N
Abstract
We prove the Farrell-Jones Isomorphism Conjecture for groups acting properl y discontinuously via isometries on(real) hyperbolic n-space H-n with finit e volume orbit space. We then apply this result to show that, for any Bianc hi group Gamma, Wh(Gamma), (K) over tilde(0)(Z Gamma), and K-i(Z Gamma) van ish for i less than or equal to -1.