Polynomial invariants for fibered 3-manifolds and Teichmuller geodesics for foliations

Authors
Citation
Ct. Mcmullen, Polynomial invariants for fibered 3-manifolds and Teichmuller geodesics for foliations, ANN SCI EC, 33(4), 2000, pp. 519-560
Citations number
47
Categorie Soggetti
Mathematics
Journal title
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE
ISSN journal
00129593 → ACNP
Volume
33
Issue
4
Year of publication
2000
Pages
519 - 560
Database
ISI
SICI code
0012-9593(200007/08)33:4<519:PIFF3A>2.0.ZU;2-1
Abstract
Let F subset of H-1(M-3, R) be a fibered face of the Thurston norm bail for a hyperbolic 3-manifold M. Any phi epsilon R+. F determines a measured foliation F of M. Generalizing the case of Teichmuller geodesics and fibrations, we show F carries a canon ical Riemann surface structure on its leaves, and a transverse Teichmuller flow with pseudo-Anosov expansion factor K(phi) > 1. We introduce a polynomial invariant Theta(F) epsilon Z[H-1(M, Z)/torsion] w hose roots determine K(phi). The Newton polygon of Theta(F) allows one to c ompute fibered faces in practice, as we illustrate for closed braids in S-3 . Using fibrations we also obtain a simple proof that the shortest geodesic on moduli space M, has length O(1/g). (C) 2000 Editions scientifiques et m edicales Elsevier SAS.