1. Spatial heterogeneity has long been viewed as a reliable means of increa
sing persistence. Here, an analytical model is developed to consider the va
riation and, hence, the persistence of stochastic metapopulations. This mod
el relies on a novel moment closure technique, which is equivalent to assum
ing log-normal distributions for the population sizes.
2. Single-species models show the greatest persistence when the mixing betw
een subpopulations is large, so spatial heterogeneity is of no benefit. Thi
s result is confirmed by stochastic simulation of the full metapopulation.
3. In contrast, natural-enemy models exhibit the greatest persistence for i
ntermediate levels of coupling. When the coupling is too low, there are ins
ufficient rescue effects between the subpopulations to sustain the dynamics
, whereas when the coupling is too high all spatial heterogeneity is lost.
4. The difference in behaviour between the one- and two-species models can
be attributed to the oscillatory nature of the natural-enemy system.