L-p approximation of Sigma-Pi neural networks

Authors
Citation
Yh. Luo et Sy. Shen, L-p approximation of Sigma-Pi neural networks, IEEE NEURAL, 11(6), 2000, pp. 1485-1489
Citations number
15
Categorie Soggetti
AI Robotics and Automatic Control
Journal title
IEEE TRANSACTIONS ON NEURAL NETWORKS
ISSN journal
10459227 → ACNP
Volume
11
Issue
6
Year of publication
2000
Pages
1485 - 1489
Database
ISI
SICI code
1045-9227(200011)11:6<1485:LAOSNN>2.0.ZU;2-J
Abstract
A feedforward Sigma-Pi neural networks with a single hidden layer of m nenr al is given by Sigma (m)(j=1) c(j)g (Pi (n)(k=1) x(k) - theta (j)(k)/lambda (j)(k)) where c(j), theta (j)(k), lambda (k) epsilon R. In this paper, we investiga te the approximation of arbitrary functions f: R-n --> R by a Sigma-Pi neur al networks in the L-p norm. For an L-p locally integrable function g(t) ca n approximation any given function, if and only if g(t) can not be written in the form Sigma (n)(j=1) Sigma (m)(k=0) a(jk)(ln \t\)(j-1) t(k).