Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm

Citation
Wjj. Roberts et S. Furui, Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm, IEEE SIGNAL, 48(12), 2000, pp. 3303-3306
Citations number
17
Categorie Soggetti
Eletrical & Eletronics Engineeing
Journal title
IEEE TRANSACTIONS ON SIGNAL PROCESSING
ISSN journal
1053587X → ACNP
Volume
48
Issue
12
Year of publication
2000
Pages
3303 - 3306
Database
ISI
SICI code
1053-587X(200012)48:12<3303:MLEOKP>2.0.ZU;2-O
Abstract
Maximum likelihood (ML) estimates of K-distribution parameters are derived using the expectation maximization (EM) approach, This approach demonstrate s computational advantages compared with 2-D numerical maximization of the likelihood function using a Nelder-Mead approach. For large datasets, the E M approach yields more accurate estimates than those of a non-ML estimation technique.