Wjj. Roberts et S. Furui, Maximum likelihood estimation of K-distribution parameters via the expectation-maximization algorithm, IEEE SIGNAL, 48(12), 2000, pp. 3303-3306
Maximum likelihood (ML) estimates of K-distribution parameters are derived
using the expectation maximization (EM) approach, This approach demonstrate
s computational advantages compared with 2-D numerical maximization of the
likelihood function using a Nelder-Mead approach. For large datasets, the E
M approach yields more accurate estimates than those of a non-ML estimation
technique.