Small eigenvalues and Euler class of circle bundles

Citation
B. Colbois et G. Courtois, Small eigenvalues and Euler class of circle bundles, ANN SCI EC, 33(5), 2000, pp. 611-645
Citations number
22
Categorie Soggetti
Mathematics
Journal title
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE
ISSN journal
00129593 → ACNP
Volume
33
Issue
5
Year of publication
2000
Pages
611 - 645
Database
ISI
SICI code
0012-9593(200009/10)33:5<611:SEAECO>2.0.ZU;2-V
Abstract
Let M(n, a, d) be the set of compact oriented Riemannian manifolds (M, g) o f dimension n whose sectional curvature K-g and diameter d(g) satisfy \K-g\ less than or equal to a and d(g) less than or equal to d. Let M(n, a, d, r ho) be the subset of M(n, a, d) of those manifolds (M, g) such that the inj ectivity radius is greater than or equal to rho. if (M, g) is an element of M(n + 1, a, d) and (N, h) is an element of M(n, a', d') are sufficiently c lose in the sense of Gromov-Hausdorff, M is a circle bundle over N accordin g to a theorem of K. Fukaya. When the Gromov-Hausdorff distance between (M, g) and (N, h) is small enough, we show that there exists m(p) - b(p)(N) b(p-1) (N) - b(p)(M) small eigenvalues of the Laplacian acting on different ial p-forms on M, 1 < p < n + 1, where b(p) denotes the p-th Betti number. We give uniform bounds of these eigenvalues depending on the Euler class of the circle bundle S-1 --> M --> N and the Gromov-Hausdorff distance betwee n (M, g) and (N, h). (C) 2000 Editions scientifiques et medicales Elsevier SAS.