On the absolute instability of the triple-deck flow over humps and near wedged trailing edges

Citation
Jsb. Gajjar et M. Turkyilmazoglu, On the absolute instability of the triple-deck flow over humps and near wedged trailing edges, PHI T ROY A, 358(1777), 2000, pp. 3113-3128
Citations number
29
Categorie Soggetti
Multidisciplinary
Journal title
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES
ISSN journal
1364503X → ACNP
Volume
358
Issue
1777
Year of publication
2000
Pages
3113 - 3128
Database
ISI
SICI code
1364-503X(200012)358:1777<3113:OTAIOT>2.0.ZU;2-M
Abstract
The triple-deck equations for the flow over a hump, a corner and a wedged t railing edge are solved numerically using a novel method based on spectral collocation. It is found that for the flow over a corner, separation begins at a scaled angle beta of 2.09, and for the wedged trailing edge for a wed ge angle of 2.56. Here beta is defined in terms of the small physical angle phi by beta = Re(1/4)lambda (-1/2)phi, lambda = 0.3320, and Re is the Reyn olds number. The absolute instability of the nonlinear mean flows computed is investigated. It is found that the flow over a hump is inviscidly absolu tely unstable with the maximum absolute unstable growth rate occurring near the maximum height of the hump, and increasing with hump size. The wake re gion behind the wedged trailing edge is also found to be absolutely unstabl e beyond a critical wedge angle, and the extent of the region of absolute i nstability increases with increasing wedge angle and separation.