Partitioning of linearly transformed input space in adaptive network basedfuzzy inference system

Authors
Citation
J. Ryu et S. Won, Partitioning of linearly transformed input space in adaptive network basedfuzzy inference system, IEICE T INF, E84D(1), 2001, pp. 213-216
Citations number
8
Categorie Soggetti
Information Tecnology & Communication Systems
Journal title
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS
ISSN journal
09168532 → ACNP
Volume
E84D
Issue
1
Year of publication
2001
Pages
213 - 216
Database
ISI
SICI code
0916-8532(200101)E84D:1<213:POLTIS>2.0.ZU;2-O
Abstract
This paper presents a new effective partitioning technique of linearly tran sformed input space in Adaptive Network based Fuzzy Inference System (ANFIS ). Tho ANFIS is thr fuzzy system with a hybrid parameter learning method, w hich is composed of a gradient and a least square method. The input space c an be partitioned flexibly using new modeling inputs, which are the weighte d linear combination of the original inputs by the proposed input partition ing technique, thus, the parameter Learning time and the modeling error of ANFIS can Lu reduced, The simulation result illustrates the effectiveness o f the proposed technique.