Hilbert space analysis of Latin Hypercube Sampling

Authors
Citation
P. Mathe, Hilbert space analysis of Latin Hypercube Sampling, P AM MATH S, 129(5), 2001, pp. 1477-1492
Citations number
21
Categorie Soggetti
Mathematics
Journal title
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
ISSN journal
00029939 → ACNP
Volume
129
Issue
5
Year of publication
2001
Pages
1477 - 1492
Database
ISI
SICI code
0002-9939(2001)129:5<1477:HSAOLH>2.0.ZU;2-T
Abstract
Latin Hypercube Sampling is a specific Monte Carlo estimator for numerical integration of functions on R-d with respect to some product probability di stribution function. Previous analysis established that Latin Hypercube Sam pling is superior to independent sampling, at least asymptotically; especia lly, if the function to be integrated allows a good additive fit. We propos e an explicit approach to Latin Hypercube Sampling, based on orthogonal pro jections in an appropriate Hilbert space, related to the ANOVA decompositio n, which allows a rigorous error analysis. Moreover, we indicate why conver gence cannot be uniformly superior to independent sampling on the class of square integrable functions. We establish a general condition under which u niformity can be achieved, thereby indicating the role of certain Sobolev s paces.