Modeling nonlinear determinism in short time series from noise driven discrete and continuous systems

Citation
Kh. Chon et al., Modeling nonlinear determinism in short time series from noise driven discrete and continuous systems, INT J B CH, 10(12), 2000, pp. 2745-2766
Citations number
39
Categorie Soggetti
Multidisciplinary
Journal title
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
ISSN journal
02181274 → ACNP
Volume
10
Issue
12
Year of publication
2000
Pages
2745 - 2766
Database
ISI
SICI code
0218-1274(200012)10:12<2745:MNDIST>2.0.ZU;2-D
Abstract
Current methods for detecting deterministic chaos in a time series require long, stationary, and relatively noise-free data records. This limits the u tility of these methods in most experimental and clinical settings. Recentl y we presented a new method for detecting determinism in a time series, and for assessing whether this determinism has chaotic attributes, i.e. sensit ivity to initial conditions. The method is based on fitting a deterministic nonlinear autoregressive (NAR) model to the data [Chon ct al., 1997]. This approach assumes that the noise in the model can be represented as a serie s of independent, identically distributed random variables. If this is not the case the accuracy of the algorithm may be compromised. To explicitly de al with the possibility of more complex noise structures, we present a meth od based on a stochastic NAR model. The method iteratively estimates NAR mo dels for both the deterministic and the stochastic parts of the signal. An additional feature of the algorithm is that it includes only the significan t autoregressive terms among the pool of candidate terms searched. As a res ult the algorithm results in a model with significantly fewer terms than a model obtained by traditional model order search criterions. Subsequently, Lyapunov exponents are calculated for the estimated models to examine if ch aotic determinism (i.e, sensitivity to initial conditions) is present in th e time series. The major advantages of this algorithm are: (1) it provides accurate parameter estimation with a small number of data points, (2) it is accurate for signal-to-noise ratios as low as -9 dB for discrete and -6 dB for continuous chaotic systems, and (3) it allows characterization of the dynamics of the system, and thus prediction of future states of the system, over short time scales. The stochastic NAR model is applied to renal tubul ar pressure data from normotensive and hypertensive rats. One form of hyper tension was genetic, and the other was induced on normotensive rats by plac ing a restricting clip on one of their renal arteries. In both types of hyp ertensive rats, positive Lyapunov exponents were present, indicating that t he fluctuations observed in the proximal tubular pressure were due to the o peration of a system with chaotic determinism. In contrast, only negative e xponents were found in the time series from normotensive rats.