L-1 factorizations for some perturbations of the unilateral shift

Citation
I. Chalendar et J. Partington, L-1 factorizations for some perturbations of the unilateral shift, CR AC S I, 332(2), 2001, pp. 115-119
Citations number
9
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
332
Issue
2
Year of publication
2001
Pages
115 - 119
Database
ISI
SICI code
0764-4442(20010115)332:2<115:LFFSPO>2.0.ZU;2-5
Abstract
We say that T is an element of L(H) (where H is a Hilbert space) factorizes f is an element of L-1 (T) if there exist x,y is an element of H such that f(n) = (T*(n)x,y) if n greater than or equal to 0 and (f) over cap(-n) = ( T(n)x,: y) if n greater than or equal to 1. By virtue of one of Bourgain's results, the unilateral shift S is an element of L(H-2) of multiplicity one factorizes f is an element of L-1 (T) if and only if log \f\ is an element of L-1 (T). We study the absolutely continuous contractions A such that th e operator S + A factorizes all functions in L-1 (T). (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.