Families of finite subsets of IN of low complexity and Tsirelson type spaces

Citation
J. Bernues et I. Deliyanni, Families of finite subsets of IN of low complexity and Tsirelson type spaces, MATH NACHR, 222, 2001, pp. 15-29
Citations number
13
Categorie Soggetti
Mathematics
Journal title
MATHEMATISCHE NACHRICHTEN
ISSN journal
0025584X → ACNP
Volume
222
Year of publication
2001
Pages
15 - 29
Database
ISI
SICI code
0025-584X(2001)222:<15:FOFSOI>2.0.ZU;2-3
Abstract
We study Tsirelson type spaces of the form T[(M-k,theta (k))(k=1)(l)] defin ed by a finite sequence (M-k)(k=1)(l) of compact families of finite subsets of IN. Using an appropriate index, denoted by i(M), to measure the complex ity of a family M, we prove the following: If i(M-k) < <omega> for all k = 1,...,l, then the space T[(M-k, theta (k))(k=1)(l)] contains isomorphically some l(p), 1 < p < infinity, or c(0). If I(M) = omega, then the space T[M, theta] contains a subspace isomorphic to a subspace of the original Tsirels on's space.