Monte-Carlo approximation of minimum entropy measures

Citation
B. Jourdain et L. Nguyen, Monte-Carlo approximation of minimum entropy measures, CR AC S I, 332(4), 2001, pp. 345-350
Citations number
3
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
332
Issue
4
Year of publication
2001
Pages
345 - 350
Database
ISI
SICI code
0764-4442(20010215)332:4<345:MAOMEM>2.0.ZU;2-V
Abstract
Let mu (n) = 1/n Sigma (n)(i=1) deltax(i) denote the empirical measure asso ciated with a sequence (X-i)(i greater than or equal to1) of r.v. i.i.d. ac cording to a probability measure mu on a Polish space S. We give a necessar y and sufficient condition for the a.s. existence of N such that. for all n greater than or equal to N, there is a probability measure v(n) which mini mizes the relative entropy with respect to mu (n) under the constraint inte gral (S) f dv(n) = 0, where f : S --> R-d. Under this condition, we prove t hat a.s. v(n) converges weakly to the generalized solution v of the minimiz ation of the entropy with respect to mu constrained problem. (C) 2001 Acade mie des sciences/Editions scientifiques et medicales Elsevier SAS.