Numerical solution of non self-adjoint Sturm Liouville problems and related systems

Citation
L. Greenberg et M. Marletta, Numerical solution of non self-adjoint Sturm Liouville problems and related systems, SIAM J NUM, 38(6), 2001, pp. 1800-1845
Citations number
47
Categorie Soggetti
Mathematics
Journal title
SIAM JOURNAL ON NUMERICAL ANALYSIS
ISSN journal
00361429 → ACNP
Volume
38
Issue
6
Year of publication
2001
Pages
1800 - 1845
Database
ISI
SICI code
0036-1429(20010208)38:6<1800:NSONSS>2.0.ZU;2-S
Abstract
This paper gives the analysis and numerics underlying a shooting method for approximating the eigenvalues of non-self-adjoint Sturm Liouville problems . We consider even order problems with (equally divided) separated boundary conditions. The method can nd the eigenvalues in a rectangle and in a left half-plane. It combines the argument principle with the compound matrix me thod (using the Magnus expansion). In some cases the computational cost of compound matrices can be reduced by transforming to a second order vector S turm Liouville problem. We study the asymptotics of the solutions of the OD E for large absolute values of the eigenvalue parameter in order to calcula te the eigenvalues in a left half-plane. The method is applied to the Orr-S ommerfeld equation and other examples.