Intraseasonal oscillations in sea surface temperature, wind stress, and sea level off the central California coast

Citation
Lc. Breaker et al., Intraseasonal oscillations in sea surface temperature, wind stress, and sea level off the central California coast, CONT SHELF, 21(6-7), 2001, pp. 727-750
Citations number
48
Categorie Soggetti
Aquatic Sciences
Journal title
CONTINENTAL SHELF RESEARCH
ISSN journal
02784343 → ACNP
Volume
21
Issue
6-7
Year of publication
2001
Pages
727 - 750
Database
ISI
SICI code
0278-4343(200104/05)21:6-7<727:IOISST>2.0.ZU;2-B
Abstract
The wavelet transform is used to conduct spectral and cross-spectral analys is of daily time series of sea surface temperature (SST), surface wind stre ss, and sea level off the central California coast for an 18-year period fr om 1974 through 1991. The spectral band of primary interest is given by int raseasonal time scales ranging from 30 to 70 days. Using the wavelet transf orm, we examine the evolutionary behavior of the frequently observed 40-50 day oscillation originally discovered in the tropics by Madden and Julian, and explore the relative importance of atmospheric vs oceanic forcing for a range of periods where both could be important. Wavelet power spectra of e ach variable reveal the event-like, nonstationary nature of the intraseason al band. Peaks in wavelet power typically last for 3-4 months and occur, on average, approximately once every 18 months. Thus, their occurrence and/or duration off central California is somewhat reduced in comparison to their presence in the tropics. Although peaks in wind stress often coincide with peaks in SST and/or sea level, no consistent relationships between the var iables was initially apparent. The spectra suggest, however, that relations hips between the variables, if and where they do exist, are event-dependent and thus have time scales of the same order. Cross-wavelet spectra between wind stress and SST indicate that periods of high coherence (> 0.90) occur on at least six occasions over the 18-year period of record. Phase differe nces tend to be positive, consistent with wind forcing. For wind stress vs sea level, the cross-wavelet spectra indicate that periods of high coherenc e, which tend to correlate with lags close to zero, also occur, but are les s frequent. As with SST, the periods of high coherence usually coincide wit h events in the wavelet power spectra. The somewhat weaker relationship bet ween wind stress and sea level may be due to an independent contribution to sea level through remote forcing by the ocean originating in the tropics. Finally, simple dynamical arguments regarding the lag relationships between the variables appear to be consistent with the cross-wavelet results. (C) 2001 Elsevier Science Ltd. All rights reserved.