A Bayesian boosting theorem

Authors
Citation
R. Nock et M. Sebban, A Bayesian boosting theorem, PATT REC L, 22(3-4), 2001, pp. 413-419
Citations number
4
Categorie Soggetti
AI Robotics and Automatic Control
Journal title
PATTERN RECOGNITION LETTERS
ISSN journal
01678655 → ACNP
Volume
22
Issue
3-4
Year of publication
2001
Pages
413 - 419
Database
ISI
SICI code
0167-8655(200103)22:3-4<413:ABBT>2.0.ZU;2-U
Abstract
We refine the first theorem of (R.E. Schapire, Y. Singer, in: Proceedings o f the 11th Annual ACM Conference on Computational Learning Theory, 1998, pp . 80-91) bounding the error of the ADABOOST boosting algorithm, to integrat e Bayes risk. This suggests the significant time savings could be obtained on some domains without damaging the solution. An applicative example is gi ven in the field of feature selection. (C) 2001 Elsevier Science B.V. All r ights reserved.