Isolated human astrocytes are not susceptible to infection by M- and T-tropic HIV-1 strains despite functional expression of the chemokine receptors CCR5 and CXCR4

Citation
A. Boutet et al., Isolated human astrocytes are not susceptible to infection by M- and T-tropic HIV-1 strains despite functional expression of the chemokine receptors CCR5 and CXCR4, GLIA, 34(3), 2001, pp. 165-177
Citations number
70
Categorie Soggetti
Neurosciences & Behavoir
Journal title
GLIA
ISSN journal
08941491 → ACNP
Volume
34
Issue
3
Year of publication
2001
Pages
165 - 177
Database
ISI
SICI code
0894-1491(200105)34:3<165:IHAANS>2.0.ZU;2-5
Abstract
Within the brain, HIV-1 targets the microglia and astrocytes. Previous stud ies have reported that viral entry into astrocytes is independent of CD4, i n contrast to microglia. We aimed to determine whether chemokine receptors play a role in mediating CD4-independent HIV-1 entry into astrocytes. We fo und that embryonic astrocytes and microglial cells express CCR5, CCR3, and CXCR4 transcripts. Intracellular calcium levels in astrocytes were found to increase following application of RANTES, MIP-1 beta (CCR5-agonist), SDF-1 alpha (CXCR4-agonist), but not eotaxin (CCR3-agonist). In microglial cells , eotaxin was also able to modulate internal calcium homeostasis. CD4 was n ot present at the cell surface of purified astrocytes but CD4 mRNA could be detected by RT-PCR. Neither HIV-1(9533) (R5 isolate) nor HIV-1(LAI) (X4 is olate) penetrated into purified astrocytes. In contrast, mixed CNS cell. cu ltures were infected by HIV-1(9533) and this was inhibited by anti-CD4 mAb in 4/4 tested cultures and by anti-CCR5 mAb in 2/4. Thus, the HIV-1 R5 stra in requires CD4 to penetrate into brain cells, suggesting that CCR5 cannot be used as the primary receptor for M-tropic HIV-1 strains in astrocytes. M oreover, inconstant inhibition of HIV-1 entry by anti-CCR5 mAb supports the existence of alternative coreceptors for penetration of M-tropic isolates into brain cells. GLIA 34:165-177, 2001. (C) zool Wiley-Liss, Inc.