A Schwarz lemma for the symmetrized bidisc

Citation
J. Agler et Nj. Young, A Schwarz lemma for the symmetrized bidisc, B LOND MATH, 33, 2001, pp. 175-186
Citations number
12
Categorie Soggetti
Mathematics
Journal title
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY
ISSN journal
00246093 → ACNP
Volume
33
Year of publication
2001
Part
2
Pages
175 - 186
Database
ISI
SICI code
0024-6093(200103)33:<175:ASLFTS>2.0.ZU;2-5
Abstract
Let cp be an analytic function from ID to the symmetrized bidisc Gamma =(def)((lambda (1) +lambda (2), lambda (1)lambda (2)) : \ lambda (1)\ less than or equal to 1, \ lambda (2)\ less than or equal to 1). We show that if phi (0) = (0, 0) and phi(lambda) = (s, p) in the interior o f Gamma, then 2 \s - p (s) over bar \+\s(2)-4p \ /4-\s \ (2) less than or equal to \ lamb da \. Moreover, the inequality is sharp: we give an explicit formula for a suitab le cp in the event that the inequality holds with equality. We show further that the inverse hyperbolic tangent of the left-hand side of the inequalit y is equal to both the Caratheodory distance and the Kobayashi distance fro m (0,0) to (s, p) in int Gamma.