We prove that if N-1(L) < N-1 (N-2(L) < N-1), then any compact covering map
ping from a space Delta (1)(1) onto a space Sigma (0)(3) (Sigma (0)(4)) is
inductively perfect. We conjecture that if "For All alpha is an element of
omega (omega), N-1(L(alpha)) < N1", the same result holds for any mapping b
etween two Borel spaces. (C) 2001 Academie des sciences/Editions scientifiq
ues et medicales Elsevier SAS.