A Weitzenbock formula for the damped Ornstein-Uhlenbeck operator in adapted differential geometry

Citation
Ab. Cruzeiro et S. Fang, A Weitzenbock formula for the damped Ornstein-Uhlenbeck operator in adapted differential geometry, CR AC S I, 332(5), 2001, pp. 447-452
Citations number
11
Categorie Soggetti
Mathematics
Journal title
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE
ISSN journal
07644442 → ACNP
Volume
332
Issue
5
Year of publication
2001
Pages
447 - 452
Database
ISI
SICI code
0764-4442(20010301)332:5<447:AWFFTD>2.0.ZU;2-L
Abstract
On the Riemannian path space we consider the Ornstein-Uhlenbeck operator as sociated to the Dirichlet form epsilon (S, g) = E <<(<del>)over tilde> f, < (<del>)over tilde> g > (H), where <(<del>)over tilde> is the damped gradien t and <., .> (H) the scalar product of the Cameron-Martin space H. We prove a corresponding WeitzenbGck formula restricted to adapted vector fileds: t he Ricci-tensor is shown to be equal to the identity. (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.