Generalizing Caratheodory's uniqueness of harmonic parameterization to N dimensions

Citation
Nd. Sidiropoulos, Generalizing Caratheodory's uniqueness of harmonic parameterization to N dimensions, IEEE INFO T, 47(4), 2001, pp. 1687-1690
Citations number
17
Categorie Soggetti
Information Tecnology & Communication Systems
Journal title
IEEE TRANSACTIONS ON INFORMATION THEORY
ISSN journal
00189448 → ACNP
Volume
47
Issue
4
Year of publication
2001
Pages
1687 - 1690
Database
ISI
SICI code
0018-9448(200105)47:4<1687:GCUOHP>2.0.ZU;2-1
Abstract
Consider a sum of F exponentials in N dimensions, and let I, be the number of equispaced samples taken along the nth dimension. it is shown that if th e frequencies or decays along every dimension are distinct N and Sigma (N)( n=1) I-n greater than or equal to 2F + (N - 1), then the parameterization i n terms of frequencies, decays, amplitudes, and phases is unique. The resul t can be viewed as generalizing a classic result of Caratheodory to N dimen sions. The proof relies on a recent result regarding the uniqueness of low- rank decomposition of N-way arrays.