We consider an incompressible and inviscid fluid flow, called "swirl flow"
that rotates around a certain axis in three-dimensional space. We investiga
te numerically the dynamics of a three-dimensional vortex sheet which is de
fined as a surface across which the velocity field of the swirl flow change
s discontinuously. The vortex method and a fast summation method are implem
ented on a parallel computer. These numerical methods make it possible to c
ompute the evolution of the vortex sheet for a long time and to describe th
e complex dynamics of the sheet. (C) 2001 Published by The Japan Society of
Fluid Mechanics and Elsevier Science B.V. All rights reserved.