Mining needles in a haystack: Classifying rare classes via two-phase rule induction

Citation
Mv. Joshi et al., Mining needles in a haystack: Classifying rare classes via two-phase rule induction, SIG RECORD, 30(2), 2001, pp. 91-102
Citations number
16
Categorie Soggetti
Computer Science & Engineering
Journal title
SIGMOD RECORD
ISSN journal
01635808 → ACNP
Volume
30
Issue
2
Year of publication
2001
Pages
91 - 102
Database
ISI
SICI code
0163-5808(200106)30:2<91:MNIAHC>2.0.ZU;2-5
Abstract
Learning models to classify rarely occurring target classes is an important problem with applications in network intrusion detection, fraud detection, or deviation detection in general. In this paper,we analyze our previously proposed two-phase rule induction method in the context of learning comple te and precise signatures of rare classes. The key feature of our method is that it separately conquers the objectives of achieving high recall and hi gh precision for the given target class. The first phase of the method aims for high recall by inducing rules with high support and a reasonable level of accuracy. The second phase then tries to improve the precision by learn ing rules to remove false positives in the collection of the records covere d by the first phase rules. Existing sequential covering techniques try to achieve high precision for each individual disjunct learned. In this paper, we claim that such approach is inadequate for rare classes, because of two problems: splintered false positives and error-prone small disjuncts. Moti vated by the strengths of our two-phase design, we design various synthetic data models to identify and analyze the situations in which two state-of-t he-art methods, RIPPER and C4.5rules, either fail to learn a model or learn a very poor model. In all these situations, our two-phase approach learns a model with significantly better recall and precision levels. We also pres ent a comparison of the three methods on a challenging real-life network in trusion detection dataset. Our method is significantly better or comparable to the best competitor in terms of achieving better balance between recall and precision.